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Abstract

P systems generating rectangular arrays and hexagonal arrays have been studied in the literature, bringing together the two areas of
theoretical computer science, namely membrane computing and picture languages. Recently, a new class of picture languages called the
class of iso-picture languages generating interesting picture languages has been introduced. In this paper, we develop a class of tissue-like
P systems with active membranes as a generative device for iso-picture languages.
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China Press. All rights reserved.
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1. Introduction

The study of syntactic methods of describing pictures con-
sidered as connected, digitized finite arrays in a two-dimen-
sional plane have been of great interest. Picture languages
generated by array grammars or recognized by array auto-
mata have been advocated since the 1970s for problems aris-
ing in the frame work of pattern recognition and image
processing [1]. Motivated by these studies, we have intro-
duced a new class of picture languages called iso-picture lan-
guages. The notions of local and recognizable iso-picture
languages have been introduced in [2], inspired by the corre-
sponding study in rectangular picture languages.

Iso-arrays are made up of isosceles right-angled triangles
and an iso-picture is a picture formed by catenating iso-
arrays of the same size. Iso-picture languages include more
picture languages-like hexagonal picture languages, rectan-
gular picture languages, and languages of rhombuses and tri-
angles [3].

Membrane computing deals with distributed comput-
ing models inspired from the structure and the function-
ing of the living cell [4]. Very briefly, in the
compartments defined by a hierarchical arrangement of
membranes, one processes multisets of objects by evolu-
tion rules associated with the membranes. One of the
branches of membrane computing is concerned with
objects described by strings, and then one considers usual
sets of strings instead of multisets of objects. These strings
are processed by rewriting or other string handling oper-
ations. Recently, Ceterchi et al. [5] proposed a variant of
tissue-like P systems in order to generate two-dimensional
picture languages on rectangular grids. The interest of the
study [5] is that it uses a novel technique of allowing the
membranes themselves to hold the pixels of the pictures
instead of the membranes just acting as regions for com-
putation. This approach is extended to hexagonal picture
languages in [6].

In this paper, the approach of [5] is extended to iso-pic-
ture languages, and analogous P systems for their genera-
tion are considered by taking into account that each
element of an iso-picture (rhombus) has eight neighbors,
two on its own row and three on the rows above and below
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it. This enables to handle local and recognizable iso-picture
languages introduced in [2].

2. Preliminaries

In this section, we recall the notions of iso-pictures, iso-
picture languages and iso-triangular tiling systems pro-
posed in [2].

Let R ¼ f g be a finite set of

labeled isosceles right-angled triangular tiles of dimensions

1ffiffi
2
p ; 1ffiffi

2
p and 1 unit, obtained by intersecting a unit square by

its diagonals.

Definition 1. An iso-array of size m ðm P 1Þ is an isosceles
right-angled triangular arrangement of elements of R, whose
equal sides are denoted as S1 and S3, and the unequal side as
S2. It consists of m tiles along the side S2 and it contains m2

gluable elements of R. Iso-arrays can be classified as U-iso-
array, D-iso-array, R-iso-array and L-iso-array, if tiles A, B,
D and C are used in side S2, respectively.

Definition 2. Let R be a finite alphabet of iso-triangular
tiles. An iso-picture of size ðn;mÞ; n;m P 1 over R is a pic-
ture formed by catenating n-iso-arrays of size m. The num-
ber of tiles in any iso-picture of size ðn;mÞ is nm2.

An element of an iso-picture p of size ðn;mÞ is
represented as pði; j; kÞ, where i is the ith iso-array of the
picture and j is the jth row of the ith iso-array and k is the
kth element of jth row of the ith iso-array, where
i ¼ 1; 2; . . . ; n, j ¼ 1; 2; . . . ;m and k ¼ 1; 2; . . . ; 2j� 1. The
set of all iso-pictures over the alphabet R is denoted by R��I .
An iso-picture language L over R is a subset of R��I .

Definition 3. Let p be an iso-picture of size ðn;mÞ. We
denote by Bn0;m0 ðpÞ the set of all sub iso-pictures of p of size
ðn0;m0Þ, where n0 6 n;m0 6 m. p̂ is an iso-picture obtained
by surrounding p with special boundary symbols

62 R.

Definition 4. An iso-picture language L � R��I is called local
if there exists a finite set h of iso-arrays of size 2 over

R [ f g such that L ¼ fp 2 R��I =

B1;2ðp̂Þ � hg and is denoted by LðhÞ.
The family of local iso-picture languages will be denoted

by ILOC.

Definition 5. Let p 2 R��I be an iso-picture. Let R and C be
two finite alphabets and p : C! R be a mapping which we
call, a projection. The projection by mapping p of the pic-
ture p is the picture p0 2 R��I such that p0ði; j; kÞ ¼
pðpði; j; kÞÞ for all 1 6 i 6 n; 1 6 j 6 m; 1 6 k 6 2j� 1,
where ðn;mÞ is the size of the iso-picture p. In this case
p0 ¼ pðpÞ.

Definition 6. Let L � C��I be an iso-picture language. The
projection by mapping p of L is the language
L0 ¼ fp0=p0 ¼ pðpÞ; 8p 2 Lg � R��I . We denote by pðLÞ the
projection by mapping p of an iso-picture language L.

Definition 7. Let R be a finite alphabet. An iso-picture lan-
guage L � R��I is called recognizable if there exists a local
iso-picture language L0 over an alphabet C and a mapping
p : C! R such that L ¼ pðL0Þ.

The family of all recognizable iso-picture languages will
be denoted by IREC.

Example 1. Let L0 be the iso-picture language of rhom-
buses, where the diagonals are represented by the tiles

and , and the tiles in the remaining positions are

represented by tiles and , a member of which is

shown in Fig. 1.
This is a local picture language.

3. Tiling iso-picture languages

We define a two-dimensional iso-triangular tiling system
as defined in [5]. We consider P ¼ fP 1; P 2; . . . ; P kg a finite
collection of finite connected subsets of Z2, called iso-pro-
totiles. The iso-prototiles can be normalized such that the
lexicographically least point is the origin ð0; 0Þ 2 Z2.

A translate of an iso-prototile P 2 P by a t 2 Z2 is the
subset t þ P of Z2 (where þ is the addition in Z2) and is
called a triangular tile.

An iso-triangular tiling of the integer plane Z2 by the
iso-prototiles P is an expression of Z2 as a disjoint union
of triangular tiles, Z2 ¼ [ðtj þ P kjÞ, where
ðti þ P kiÞ \ ðtj þ P kjÞ ¼ / if i 6¼ j. We equivalently say that
the set of iso-prototiles P tiles the integer plane.

Consider A ¼ f1; 2; . . . ; kg the finite set of labels of
iso-prototiles of P and think of it as a finite alphabet
of shapes.
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Fig. 1. A member of L0.
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Consider AZ2

the set of functions defined on Z2 and with
values in A. A tiling of the plane Z2 ¼ [ðtj þ P kjÞ will be
associated with an element x 2 AZ2

in the following way:
for every v 2 Z2; xðvÞ ¼ r iff the point v lies in a tile that
is a translate of P r, i.e., iff v 2 tj þ P kj and kj ¼ r. For
x 2 AZ2

and v 2 Z2, we denote xðvÞ by xv.
A two-dimensional shift is an application

r : Z2 ! HomeoðAZ2Þ such that for any v 2 Z2,
rv : AZ2 ! AZ2

is the translation of the plane by the vec-
tor v, i.e., ðrvðxÞÞw ¼ xwþv, for any x 2 AZ2

and any
w 2 Z2. A subset X � AZ2

is called r-invariant iff
rvðxÞ � X , for any v 2 Z2. Consider now the set T ðPÞ
of all x 2 AZ2

which corresponds to the iso-tiling of Z2

by P. This set is a r-variant closed subset of AZ2

, and
thus ðT ðPÞ; rÞ is a subshift ðAZ2

; rÞ.
We extend the set of iso-prototiles P with one more

iso-prototile P# ¼ fð0; 0Þg. We will think about the tiles
obtained by translating this iso-prototile filled with #A
or #B. Then P ¼ fP 1; P 2; . . . ; P k; P #g is the extended
set of tiles, A ¼ f1; 2; . . . ; k;#A;#Bg is the extended
alphabet of shapes.

Formally if P ¼ fP 1; P 2; . . . ; P #g is a set of iso-proto-
tiles, V is an alphabet and #A;#B are special boundary
symbols, denoting the blank, then for any i ¼ 1; 2; . . . ; k,
we can define the application fi : P i ! V , which associ-
ates a symbol from V with any pixel of P i. For P # we
take f# : P # ! f#A;#Bg. Then for any iso-tiling of the
integer plane Z2 ¼ [ðtj þ P kjÞ, we can define an applica-
tion f : Z2 ! V [ f#A;#Bg such that f ðtj þ wÞ ¼ fkjðwÞ,
for any j and any w 2 P kj . If the tiling is compatible
with an iso-tiling, we can define an iso-picture
p ¼ ðP ijkÞ16i6n;16j6m;16k62m�1 such that P ijk represents
exactly the value in V of the same pixel in the shift
invariant iso-tiling. We denote by LðP; V ;FÞ the two-
dimensional iso-picture language of elements of V ��I cov-
erable by tilings compatible with iso-tilings over a set of
iso-prototiles P ¼ fP 1; P 2; . . . ; P kg, an alphabet V and the
applications

F ¼ ff1 : P 1 ! V ; . . . ; fk : P k ! V g:

Example 2. We consider a set of iso-prototiles
P ¼ fP 1 ¼ fð0; 0Þ; ð1; 0Þg, P 2 ¼ fð1; 0Þ; ð2; 0Þg,

P 3 ¼ f0; 0g, P 4 ¼ fð1; 0Þg. The alphabet V ¼ f ; g
and the applications F ¼ ff1 : P 1 ! V ; f2 : P 2 ! V ; f3 :
P 3 ! V ; f4 : P 4 ! V g, with f1ð0; 0Þ ¼ ;f1ð1; 0Þ ¼ ;
f2ð1; 0Þ ¼ ; f2ð2; 0Þ ¼ ;f3ð0; 0Þ ¼ ;f4ð1; 0Þ ¼ .
The language L2 ¼ LðP; V ;F Þ contains all the iso-pictures
that can be covered with the iso-tiles represented in Fig. 2.

The iso-picture shown in Fig. 3 belongs to the language
L2.

Consider the local iso-picture language given in Exam-
ple 1, the language of rhombuses. This local iso-picture
language is generated by the set of iso-prototiles shown in
Fig. 4.

Now we give the mapping as follows:

Now it can be easily seen that the iso-picture language of
rhombuses over the two-letter alphabet { , } is the
recognizable iso-picture language. Hence L2 is a recogniz-
able iso-picture language.

4. P systems for generating iso-picture languages

For generating two-dimensional pictures, tissue-like P

systems [7] with active membranes were proposed in [5,6].
We apply this formalism of P systems to generate iso-pic-
tures (for simplicity, let us take the iso-picture language
of rhombuses, the same technique can be used to generate
any iso-picture). The basic idea in the construction of the P

system is on the lines of [5]. The difference lies mainly in the
formation of rules.

A P system with active membranes is a construct
p ¼ ðO, H, l, w1, . . ., wm, RÞ, where O is the alphabet of
objects, H is a finite set of labels for membranes, l is a
membrane structure consisting of m membranes, labeled
with elements of H, w1;w2; . . . ;wm are strings over O repre-
senting the multiset of objects placed in the m regions of l
and R is a finite set of developmental rules. The rules of R

are object evolution rules, communication rules, division
rules and dissolving rules.

Let us consider a set of iso-prototiles fP 1; P 2; . . . ; P kg, an
alphabet V and the applications f1 : P 1 ! V ; . . . ;
fk : P k ! V . We denote by Q the following set of headed
iso-prototile labels

Q ¼ fða;b; cÞ=ðb; cÞ 2 P ag

A B B A A B

f f f f1 2 3 4

Fig. 2. Examples of iso-prototiles.
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Fig. 3. Examples of an iso-picture that belongs to the language L2.
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We denote by Q0 � Q a distinguished subset of headed iso-
prototile labels.

An iso-picture is generated by evolving an initial P sys-
tem into a stable P system. An iso-picture is the result of
the entire configuration of the final stable P system with
each membrane corresponding to a pixel of an iso-picture.
The communication graph of this P system is a rhombus
grid in which each inner node is connected with four neigh-
bors, each border node with three neighbors and each cor-
ner with two neighbors.

We distinguish 9 types of nodes in order to guarantee
that this P system generates only iso-pictures (rhombuses).
We denote by T ¼ fij=i; j 2 f0; 1; 2; 3; 4gg the set of labels
corresponding to these nodes (Fig. 5). These 9 grid posi-
tions in the P systems can be represented by a set of 9 sym-
bols fP 02; P 11; P 13; P 20; P 22; P 24; P 31; P 33; P 42g, such that at
any moment, in any membrane in the system, at least one
of the symbols is present. Every membrane in the system,
after its creation, checks for the type of its neighbors, by
communicating them to a symbol, which represents a pos-
sible neighbor type.

For example, a node on the right-up margin (margin
holding the symbols P 02; P 13; P 24) of the grid may have as
a left-down neighbor either an inner node or a node on
the left-down margin (margin holding the symbols
P 20; P 31; P 42) of the grid. Then a membrane containing the
symbol P 13 sends non-deterministically to its left-down
neighbor either a symbol P 22 or a symbol P 31. If two differ-
ent symbols P t and P s are present at the same time in a
membrane, then a killer (a special symbol k) is produced
in that membrane and during the next evolution step the
killer dissolves the membrane. Only those P systems having
a rhombus grid as the communication graph will be stable.

In this way, we will check by local tests for the whole integ-
rity of the grid.

The generation of any iso-picture will start from its
upper corner. Thus any stable P system will evolve from
an initial P system, containing only one membrane and
two symbols, the marker P 02 and the output start symbol
(a special symbol s).

The output start symbol evolves, in any membrane m in
which it is present, either in #A, #B if m is a membrane on
the border of the iso-picture, or in an arbitrary symbol V if
m is an inner membrane.

A membrane label from the set M is a multiset over a
two-letter alphabet frd ; ldg. Considering that rd and ld indi-
cate right-down and left-down, respectively, the label of the
membrane will represent the path (s), which lead (s) from
the upper corner of the grid (the k membrane) to the given
membrane. In this way, positions can be communicated
with respect to the given membrane (+rd for right-down,
+ld for left-down, �rd for left-up and �ld for right-up
directions).

The rules are object evolution rules, dissolving rules,
object evolution rules combined with membrane division
and/or communication by symport rules and membrane
division rules combined with communication by symport
rules and dissolving rules.

Formally, an iso-tiling P system is a construct
A ¼ ðO; V ;M ; ðcontmÞm2M ;RÞ such that

� O ¼ V [ f#A;#Bg [ fP t=t 2 Tg [ Q [ fs; c; kg is the
alphabet of symbol-objects. The symbols ðP tÞt2T indicate
the type of the membrane with respect to the position
into the rhombus grid. The subset Q represents the
headed iso-prototile labels. The symbols s; c and k are
the output start symbol, the checking start symbol and
the killer, respectively.
� V � O is the output alphabet.
� M � ðrd þ ldÞ�. A membrane label is a multiset of sup-

port frd ; ldg described by a string over rd and ld . If
m 2 M and x 2 frd ; ldg, then by m� x we mean the mul-
tiset obtained from m by deleting one occurrence of x

and by mþ x we mean the multiset obtained from m

by adding one occurrence of x.
� The set of rules R is divided into three groups, as

described below.

Creation rules: These rules are creating the grid of mem-
branes, checking for the integrity of the grid and generating
tiles on the grid.

, , , , ,

, , , , ,,

{

}

A B A B A B A B AB

B A B
A B A A A B B

1 1 1 2 2
1
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Fig. 4. Iso-prototiles for the local iso-picture languages given in Example 1.
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Fig. 5. Rectangular grid and the marked positions of a rhombus.
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1. ½P 02s�m ! P 02#B½P lks�mþld
½P nts�mþrd

with lk ¼ f11; 20g,
nt ¼ f13; 24g. The output start symbol s, in the pres-
ence of the marker P 00, evolves to #B. Because of the
presence of the marker P 02, m should be the mem-
brane k (the upper corner of the grid), which has
two neighbors, right-down and to the left-down.
The left-down neighbor should be a membrane
either on the left-up margin or in the down corner
of the left-up margin. Thus m divides to produce
the membrane mþ ld with the content P 11s or
P 20s. A similar effect is taken for the membrane
mþ rd .

2. ½P 11s�m ! P 11#B½P lk�m�ld
½P uvs�mþrd

½P nts�mþld
with lk ¼

f11; 02g, nt ¼ f11; 20g, uv ¼ f22; 33g. The output
start symbol s, in the presence of the marker P 11,
evolves to #B. Because of the presence of the marker
P 11, m should be a membrane on the left-up margin of
the grid which has three neighbors right-up, right-
down and left-down. The right-up neighbor already
exists, thus m will send either P 02 or P 11 to the mem-
brane m� ld in order to check its type. For the right-
down neighbor, m concurs for its creation with
another membrane in the system, namely
m� ld þ rd . If m wins, then it divides to produce
ðm� ldÞ þ rd and declares its type by writing either
P 22s or P 33s in it. If not this part of the rule is treated
as a symport rule and m will send to the membrane
mþ rd either P 22s or P 33s in order to check its type.
Finally m divides to produce the membrane m� ru

with the content P 11s or P 20s.
3. ½P 20s�m ! P 20#A½P lk�m�ld

½P nts�mþrd
with lk ¼ f11; 02g,

nt ¼ f31; 42g. Analogously with the rules 1 or 2.
4. ½P 13s�m ! P 13#B½P lk�m�rd

½P nts�mþrd
½P uvs�mþld

with
lk ¼ f13; 02g, nt ¼ f13; 24g, uv ¼ f22; 31g. Analo-
gously with the rules 1 or 2.

5. ½P 22s2�m ! P 22faðb; cÞ ½P lk�m�rd
½P nt�m�ld

½P uvy�mþrd

½P abz�mþld
with lk ¼ f22; 11g, nt ¼ f22; 13g,

uv ¼ f22; 33g, ab ¼ f22; 31g. Analogously with the
rules 1 or 2, with the only notable difference that s2

evolves to faðb; cÞ for a headed iso-prototile label
ða; b; cÞ 2 Q0. In the new membranes mþ rd and
mþ ld , apart from the position markers, new objects
are written depending on the headed iso-prototile
label ða; b; cÞ. If ðbþ 1; cþ 1Þ 2 P a, then
y ¼ ða; bþ 1; cþ 1Þ else y ¼ s. If ðbþ 1; c� 1Þ 2 P a,
then z ¼ ða; bþ 1; c� 1Þ else z ¼ s.

6. ½P 22sða; b; cÞ�m ! P 22faðb; cÞ ½P lk�m�rd
½P nt�m�ld

½P uvy�mþrd
½P abz�mþld

with lk ¼ f22; 11g, nt ¼ f22; 13g,
uv ¼ f22; 33g, ab ¼ f22; 31g. Analogously with the
rules 1 or 2, with the only notable difference that
sða;b; cÞ evolves to faðb; cÞ for a headed iso-prototile
label ða; b; cÞ 2 Q0. In the new membranes mþ rd and
mþ ld , apart from the position markers, new objects
are written depending on the headed iso-prototile
label ða; b; cÞ. If ðbþ 1; cþ 1Þ 2 P a, then
y ¼ ða; bþ 1; cþ 1Þ else y ¼ s. If ðbþ 1; c� 1Þ 2 P a,
then z ¼ ða; bþ 1; c� 1Þ else z ¼ s.

7. ½P 22ða; b; cÞ2�m ! P 22faðb; cÞ ½P lk�m�rd
½P nt�m�ld

½P uvy�mþrd
½P abz�mþld

with lk ¼ f22; 11g, nt ¼ f22; 13g,
uv ¼ f22; 33g, ab ¼ f22; 31g. Analogously with the
rules 1 or 2, with the only notable difference that
ða; b; cÞ2 evolves to faðb; cÞ for a headed iso-prototile
label ða; b; cÞ 2 Q0. In the new membranes mþ rd and
mþ ld , apart from the position markers, new objects
are written depending on the headed iso-prototile
label ða; b; cÞ. If ðbþ 1; cþ 1Þ 2 P a, then y ¼ ða;
bþ 1; cþ 1Þ else y ¼ s. If ðbþ 1; c� 1Þ 2 P a, then
z ¼ ða; bþ 1; c� 1Þ else z ¼ s.

8. ½P 31s�m ! P 31#Ac½P lk�m�rd
½P nt�m�ld

½P uvs�mþrd
with lk ¼

f20g, nt ¼ f22; 13g, uv ¼ f31; 42g. Analogously with
the rules 1 or 2.

9. ½P 24s�m ! P 24#Ac½P lk�m�rd
½P nts�mþld

with lk ¼ f02; 13g,
nt ¼ f33; 42g. Analogously with the rules 1 or 2.

10. ½P 33s�m ! P 33#Ac½P lk�m�rd
½P nt�m�ld

½P uvs�mþld
with lk ¼

f33; 22g, nt ¼ f24g, uv ¼ f33; 42g. Analogously with
the rules 1 or 2.

11. ½P 42s�m ! P 42#Ac½P lk�m�rd
½P nts�m�ld

with
lk ¼ f20; 31g, nt ¼ f33; 24g. Analogously with the
rules 1 or 2. Contamination rules: These rules are
contaminating the P system with the killer that dis-
solves the membranes (by destruction rules).

12. ½P ijP lk�m ! k with i; j; l; k 2 f0; 1; 2; 3; 4g and ði; jÞ 6¼
ðl; kÞ. Two different markers in the same membrane
produce a killer.

13. ½ða; b; cÞða0; b0; c0Þ�m ! k with ða; b; cÞ, ða0; b0; c0Þ 2 Q,
ða; b; cÞ 6¼ ða0; b0; c0Þ. Two different headed iso-proto-
tile labels in a boundary membrane produce a
killer.

14. ½P ijða; b; cÞ�m ! k with ij 6¼ 22 and ða; b; cÞ 2 Q. A
headed iso-prototile label in a boundary membrane
produces a killer. Destruction rules: By these rules,
the killer spreads from a contaminated membrane
all over the P system, while dissolving the membranes
in which it appears.

15. ½P 02k�m ! ½k�mþrd
½k�mþld

d. The killer in the presence of
the marker P 02 is sent right-down and to left-down
and dissolves the membrane m.

16. ½P 11k�m ! ½k�m�ld
½k�mþrd

½k�mþld
d. The killer in the pres-

ence of the marker P 11 is sent right-down, left-down
and right-up, and dissolves the membrane m.

17. ½P 20k�m ! ½k�m�ld
½k�mþrd

d. Analogously with the rules
15 or 16.

18. ½P 13k�m ! ½k�m�rd
½k�mþrd

½k�mþld
d. Analogously with the

rules 15 or 16.
19. ½P 22k�m ! ½k�m�ld

½k�m�rd
½k�mþrd

½k�mþld
d. Analogously with

the rules 15 or 16.
20. ½P 31k�m ! ½k�m�rd

½k�m�ld
½k�mþrd

d. Analogously with the
rules 15 or 16.

21. ½P 24k�m ! ½k�m�rd
½k�mþld

d. Analogously with the rules
15 or 16.

22. ½P 33k�m ! ½k�m�rd
½k�m�ld

½k�mþld
d. Analogously with the

rules 15 or 16.
23. ½P 42k�m ! ½k�m�rd

½k�m�ld
d. Analogously with the rules

15 or 16.
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An iso-tiling P system A ¼ ðO; V ;M ; ðcontmÞm2N ;RÞ is
called initial over V iff M ¼ fkg and contk ¼ fP 02sg. With
any stable alive iso-tiling P system A ¼ ðO; V ;M ;
ðcontmÞm2M ;RÞ we may associate an iso-picture over the
alphabet V in the following way.

1. First, we define two natural numbers, s and t by:

s ¼ maxfij9j such that ri
dlj

d 2 Mg � 1;

t ¼ maxfjj9i such that ri
dlj

d 2 Mg � 1:

2. If s and t are greater than 1, then we consider an iso-
picture

ðP ijkÞ16i6n;16j6m;16k62m�1 with P ijk ¼ h iff h 2 contri
d lj

d
\ V ;

otherwise, we consider the empty picture. We define an iso-
picture language generated by an initial grid-like P system
with active membrane A, as the set of iso-pictures associated
with all grid-like P systems with active membranes from the
stable universe of A. Thus we obtain the following result.

Theorem 1. An initial grid-like P system with active mem-

branes, over a given output alphabet V, without any checking

rules generates the language of all iso-pictures over V.

In particular, the generation of local and recognizable iso-

picture language introduced in [2] can be done with grid-like

P systems with active membranes. The details are omitted as
it can be done analogously to the rectangular case [5].

We end this section, considering the iso-picture language
L2 ¼ LðP; V ;F Þ defined in Example 2. Using the above
notations we can define an initial iso-tiling P system A with
the set of headed iso-prototiles labels

Q ¼ fð1; 0; 0Þ; ð1; 1; 0Þ; ð2; 1; 0Þ; ð2; 2; 0Þ; ð3; 0; 0Þ; ð4; 1; 0Þg
and the subset of starting headed iso-prototiles labels

Q0 ¼ fð1; 0; 0Þ; ð2; 1; 0Þ; ð3; 0; 0Þ; ð4; 1; 0Þg:
Then the language of iso-pictures associated with all the
iso-tiling P systems from the stable universe of A is ex-
actly L2.

5. Conclusions

The generation of iso-pictures by P systems based on the
techniques of [5] is considered here. Although the extension
is done for an iso-picture language of rhombuses, the study
can be extended to generate any general iso-picture
language.
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